Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases.

Identifieur interne : 000058 ( Main/Exploration ); précédent : 000057; suivant : 000059

Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases.

Auteurs : Katarzyna Kaczmarek Michaels [États-Unis] ; Salwa Mohd Mostafa [États-Unis] ; Julia Ruiz Capella [Espagne] ; Claire L. Moore [États-Unis]

Source :

RBID : pubmed:32356874

Descripteurs français

English descriptors

Abstract

Adjusting DNA structure via epigenetic modifications, and altering polyadenylation (pA) sites at which precursor mRNA is cleaved and polyadenylated, allows cells to quickly respond to environmental stress. Since polyadenylation occurs co-transcriptionally, and specific patterns of nucleosome positioning and chromatin modifications correlate with pA site usage, epigenetic factors potentially affect alternative polyadenylation (APA). We report that the histone H3K4 methyltransferase Set1, and the histone H3K36 methyltransferase Set2, control choice of pA site in Saccharomyces cerevisiae, a powerful model for studying evolutionarily conserved eukaryotic processes. Deletion of SET1 or SET2 causes an increase in serine-2 phosphorylation within the C-terminal domain of RNA polymerase II (RNAP II) and in the recruitment of the cleavage/polyadenylation complex, both of which could cause the observed switch in pA site usage. Chemical inhibition of TOR signaling, which causes nutritional stress, results in Set1- and Set2-dependent APA. In addition, Set1 and Set2 decrease efficiency of using single pA sites, and control nucleosome occupancy around pA sites. Overall, our study suggests that the methyltransferases Set1 and Set2 regulate APA induced by nutritional stress, affect the RNAP II C-terminal domain phosphorylation at Ser2, and control recruitment of the 3' end processing machinery to the vicinity of pA sites.

DOI: 10.1093/nar/gkaa292
PubMed: 32356874
PubMed Central: PMC7261179


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases.</title>
<author>
<name sortKey="Kaczmarek Michaels, Katarzyna" sort="Kaczmarek Michaels, Katarzyna" uniqKey="Kaczmarek Michaels K" first="Katarzyna" last="Kaczmarek Michaels">Katarzyna Kaczmarek Michaels</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111</wicri:regionArea>
<wicri:noRegion>Massachusetts 02111</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mohd Mostafa, Salwa" sort="Mohd Mostafa, Salwa" uniqKey="Mohd Mostafa S" first="Salwa" last="Mohd Mostafa">Salwa Mohd Mostafa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111</wicri:regionArea>
<wicri:noRegion>Massachusetts 02111</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Capella, Julia" sort="Ruiz Capella, Julia" uniqKey="Ruiz Capella J" first="Julia" last="Ruiz Capella">Julia Ruiz Capella</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid 28223, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid 28223</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moore, Claire L" sort="Moore, Claire L" uniqKey="Moore C" first="Claire L" last="Moore">Claire L. Moore</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111</wicri:regionArea>
<wicri:noRegion>Massachusetts 02111</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32356874</idno>
<idno type="pmid">32356874</idno>
<idno type="doi">10.1093/nar/gkaa292</idno>
<idno type="pmc">PMC7261179</idno>
<idno type="wicri:Area/Main/Corpus">000082</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000082</idno>
<idno type="wicri:Area/Main/Curation">000082</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000082</idno>
<idno type="wicri:Area/Main/Exploration">000082</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases.</title>
<author>
<name sortKey="Kaczmarek Michaels, Katarzyna" sort="Kaczmarek Michaels, Katarzyna" uniqKey="Kaczmarek Michaels K" first="Katarzyna" last="Kaczmarek Michaels">Katarzyna Kaczmarek Michaels</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111</wicri:regionArea>
<wicri:noRegion>Massachusetts 02111</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mohd Mostafa, Salwa" sort="Mohd Mostafa, Salwa" uniqKey="Mohd Mostafa S" first="Salwa" last="Mohd Mostafa">Salwa Mohd Mostafa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111</wicri:regionArea>
<wicri:noRegion>Massachusetts 02111</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ruiz Capella, Julia" sort="Ruiz Capella, Julia" uniqKey="Ruiz Capella J" first="Julia" last="Ruiz Capella">Julia Ruiz Capella</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid 28223, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid 28223</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté de Madrid</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Moore, Claire L" sort="Moore, Claire L" uniqKey="Moore C" first="Claire L" last="Moore">Claire L. Moore</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111</wicri:regionArea>
<wicri:noRegion>Massachusetts 02111</wicri:noRegion>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111</wicri:regionArea>
<placeName>
<region type="state">Massachusetts</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Nucleic acids research</title>
<idno type="eISSN">1362-4962</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatin (chemistry)</term>
<term>Chromatin (drug effects)</term>
<term>Gene Deletion (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Histone-Lysine N-Methyltransferase (genetics)</term>
<term>Histone-Lysine N-Methyltransferase (physiology)</term>
<term>Histones (MeSH)</term>
<term>Methyltransferases (genetics)</term>
<term>Methyltransferases (physiology)</term>
<term>Nucleosomes (metabolism)</term>
<term>Polyadenylation (MeSH)</term>
<term>RNA Polymerase II (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (physiology)</term>
<term>Sirolimus (pharmacology)</term>
<term>mRNA Cleavage and Polyadenylation Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Chromatine (composition chimique)</term>
<term>Chromatine (effets des médicaments et des substances chimiques)</term>
<term>Délétion de gène (MeSH)</term>
<term>Facteurs de clivage et de polyadénylation de l'ARN messager (métabolisme)</term>
<term>Histone (MeSH)</term>
<term>Histone-lysine N-methyltransferase (génétique)</term>
<term>Histone-lysine N-methyltransferase (physiologie)</term>
<term>Methyltransferases (génétique)</term>
<term>Methyltransferases (physiologie)</term>
<term>Nucléosomes (métabolisme)</term>
<term>Polyadénylation (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (physiologie)</term>
<term>RNA polymerase II (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Sirolimus (pharmacologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Chromatin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="drug effects" xml:lang="en">
<term>Chromatin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Histone-Lysine N-Methyltransferase</term>
<term>Methyltransferases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Nucleosomes</term>
<term>RNA Polymerase II</term>
<term>mRNA Cleavage and Polyadenylation Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Histone-Lysine N-Methyltransferase</term>
<term>Methyltransferases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Chromatine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Chromatine</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Histone-lysine N-methyltransferase</term>
<term>Methyltransferases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de clivage et de polyadénylation de l'ARN messager</term>
<term>Nucléosomes</term>
<term>RNA polymerase II</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Histone-lysine N-methyltransferase</term>
<term>Methyltransferases</term>
<term>Protéines de Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Deletion</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Histones</term>
<term>Polyadenylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Délétion de gène</term>
<term>Histone</term>
<term>Polyadénylation</term>
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Adjusting DNA structure via epigenetic modifications, and altering polyadenylation (pA) sites at which precursor mRNA is cleaved and polyadenylated, allows cells to quickly respond to environmental stress. Since polyadenylation occurs co-transcriptionally, and specific patterns of nucleosome positioning and chromatin modifications correlate with pA site usage, epigenetic factors potentially affect alternative polyadenylation (APA). We report that the histone H3K4 methyltransferase Set1, and the histone H3K36 methyltransferase Set2, control choice of pA site in Saccharomyces cerevisiae, a powerful model for studying evolutionarily conserved eukaryotic processes. Deletion of SET1 or SET2 causes an increase in serine-2 phosphorylation within the C-terminal domain of RNA polymerase II (RNAP II) and in the recruitment of the cleavage/polyadenylation complex, both of which could cause the observed switch in pA site usage. Chemical inhibition of TOR signaling, which causes nutritional stress, results in Set1- and Set2-dependent APA. In addition, Set1 and Set2 decrease efficiency of using single pA sites, and control nucleosome occupancy around pA sites. Overall, our study suggests that the methyltransferases Set1 and Set2 regulate APA induced by nutritional stress, affect the RNAP II C-terminal domain phosphorylation at Ser2, and control recruitment of the 3' end processing machinery to the vicinity of pA sites.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32356874</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>08</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1362-4962</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>48</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2020</Year>
<Month>06</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Nucleic acids research</Title>
<ISOAbbreviation>Nucleic Acids Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases.</ArticleTitle>
<Pagination>
<MedlinePgn>5407-5425</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/nar/gkaa292</ELocationID>
<Abstract>
<AbstractText>Adjusting DNA structure via epigenetic modifications, and altering polyadenylation (pA) sites at which precursor mRNA is cleaved and polyadenylated, allows cells to quickly respond to environmental stress. Since polyadenylation occurs co-transcriptionally, and specific patterns of nucleosome positioning and chromatin modifications correlate with pA site usage, epigenetic factors potentially affect alternative polyadenylation (APA). We report that the histone H3K4 methyltransferase Set1, and the histone H3K36 methyltransferase Set2, control choice of pA site in Saccharomyces cerevisiae, a powerful model for studying evolutionarily conserved eukaryotic processes. Deletion of SET1 or SET2 causes an increase in serine-2 phosphorylation within the C-terminal domain of RNA polymerase II (RNAP II) and in the recruitment of the cleavage/polyadenylation complex, both of which could cause the observed switch in pA site usage. Chemical inhibition of TOR signaling, which causes nutritional stress, results in Set1- and Set2-dependent APA. In addition, Set1 and Set2 decrease efficiency of using single pA sites, and control nucleosome occupancy around pA sites. Overall, our study suggests that the methyltransferases Set1 and Set2 regulate APA induced by nutritional stress, affect the RNAP II C-terminal domain phosphorylation at Ser2, and control recruitment of the 3' end processing machinery to the vicinity of pA sites.</AbstractText>
<CopyrightInformation>© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kaczmarek Michaels</LastName>
<ForeName>Katarzyna</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mohd Mostafa</LastName>
<ForeName>Salwa</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ruiz Capella</LastName>
<ForeName>Julia</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Faculty of Experimental Sciences, Universidad Francisco de Vitoria, Madrid 28223, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Moore</LastName>
<ForeName>Claire L</ForeName>
<Initials>CL</Initials>
<AffiliationInfo>
<Affiliation>Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Nucleic Acids Res</MedlineTA>
<NlmUniqueID>0411011</NlmUniqueID>
<ISSNLinking>0305-1048</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002843">Chromatin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006657">Histones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D009707">Nucleosomes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D039221">mRNA Cleavage and Polyadenylation Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="D008780">Methyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.-</RegistryNumber>
<NameOfSubstance UI="C448996">Set2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.43</RegistryNumber>
<NameOfSubstance UI="D011495">Histone-Lysine N-Methyltransferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.1.1.43</RegistryNumber>
<NameOfSubstance UI="C411250">SET1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="D012319">RNA Polymerase II</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002843" MajorTopicYN="N">Chromatin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011495" MajorTopicYN="N">Histone-Lysine N-Methyltransferase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006657" MajorTopicYN="N">Histones</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008780" MajorTopicYN="N">Methyltransferases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009707" MajorTopicYN="N">Nucleosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026723" MajorTopicYN="Y">Polyadenylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012319" MajorTopicYN="N">RNA Polymerase II</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D039221" MajorTopicYN="N">mRNA Cleavage and Polyadenylation Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>04</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>04</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>12</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>8</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32356874</ArticleId>
<ArticleId IdType="pii">5827662</ArticleId>
<ArticleId IdType="doi">10.1093/nar/gkaa292</ArticleId>
<ArticleId IdType="pmc">PMC7261179</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1999 Sep 24;274(39):27823-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10488128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stem Cell. 2020 May 7;26(5):722-738.e7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32229311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Wiley Interdiscip Rev RNA. 2014 Mar-Apr;5(2):183-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24243805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 Jan;202(1):77-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26564157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 Feb 23;128(4):707-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Cell Res. 2017 Jul 1;356(1):40-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28408318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2003 Mar 1;17(5):654-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12629047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jul 20;282(29):20827-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17525156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8695-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Jul 23;329(5990):432-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20522740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2019 Feb 12;26(7):1919-1933.e5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30759400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Nov 18;123(4):581-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286007</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Aug;18(8):1224-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18487515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Nov 4;47(19):10027-10039</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31501864</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1989 Jan-Feb;5(1):51-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2648697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jan 26;9(1):391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29374152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2019 Oct;20(10):599-614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31267064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Mar 1;41(5):2881-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23325844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Oct 15;22(20):2786-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18923077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 Sep 27;7:534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21952137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Nov 6;9(3):821-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25437538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Stress. 2018 Jun 12;2(7):176-180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31225484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2019 Jan 10;12:518</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30687010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2014 Mar 28;446(1):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24607280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2015 Jun 15;6:7218</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26074333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2018;612:489-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30502955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Behav. 2018 May 1;188:173-180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29391168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Mar 27;33(6):752-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19328068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 Sep;31(17):3569-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21709022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):90-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2009 Jun;44(2-3):117-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19514890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Nov 28;7:13610</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27892455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Sep 20;489(7416):452-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22914091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2018 Dec;64(6):1221-1228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29846762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2019 Dec;59:143-150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31499460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2017 Jan;18(1):18-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27677860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Mar;11(3):709-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12667453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Jun 29;336(6089):1723-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22745433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Med Genomics. 2019 May 9;12(1):60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31072331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Feb 19;327(5968):996-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2016 May 20;5:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27205883</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 May 18;316(5827):1050-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17510366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Jun;1849(6):688-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25727182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 20;284(12):7970-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19155214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Dec 14;9(1):5331</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30552333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Jun 14;2:16013</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Endocrinol. 2016 Oct 15;434:250-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27402603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Aug;28(16):4915-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18541663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Jan 22;12(2):165-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11818070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Dec 15;3:e04506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25497836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2018 Jan 25;172(3):629-631</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29373832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Nov 6;98(23):12902-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11687631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2019 Dec;29(12):1974-1984</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31740578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Immunol. 2019 Jul;19(7):417-432</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30918351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2003 Jul 15;20(9):827-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12845608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2016 Aug;17(8):487-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27346641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Aug 26;6(8):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20865123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2016 Sep;22(9):1441-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27407180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2019 Mar 4;11(5):1356-1388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30835716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2017 Oct;27(10):1685-1695</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28916539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Mar 14;278(11):8897-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12511561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Apr 25;153(3):590-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23622243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2014 Feb;21(2):175-179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24413056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Dec 20;277(51):49383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12381723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2020 May;17(5):689-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32009536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Apr 17;137(2):259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19379692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2015 Apr 23;161(3):526-540</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25910207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Neurosci. 2018 Sep;41(9):587-598</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29885742</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2013 Mar 1;41(5):3104-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23355614</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2017 Jun 29;37(14):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28483910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Nov;23(21):7887-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Sep 23;6:33970</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27659668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Dec 15;15(24):3286-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11751634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Feb 28;326(4):1081-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12589755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2016 Jun 2;62(5):695-711</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27259202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Apr 9;285(15):11704-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20139424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):17945-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20921369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Jan 7;144(1):16-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21215366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2016 Oct;26(10):1363-1375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27540088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 May 06;3:e02482</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24843002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microrna. 2014;3(1):2-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25069507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Jun 21;7:11949</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27325136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2015;12(6):597-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25892335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Jun 09;5:3965</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24910128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2013 Apr;25(2):222-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23357469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Dec 17;20(24):7137-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11742990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2004 Jan 16;13(1):67-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14731395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Dec 22;20(6):971-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16364921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 Aug;31(15):3171-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Epigenetics Chromatin. 2019 Apr 02;12(1):20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30940185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Sep;23(17):5972-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12917322</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2017 Nov 1;199(9):3106-3115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28954886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2017 May 18;66(4):546-557.e3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28506463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2007 May 18;129(4):823-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2018 Feb 12;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29440281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Sep 23;353(6306):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27708008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2012 Oct 01;2012(10):1082-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Nov;40(21):10679-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22977174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Apr;32(7):1321-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22290438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Oct 15;8(10):e75578</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24143171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 May 4;287(19):15219-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22431730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Nov 14;26(22):4646-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17948059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Aug 26;286(34):29828-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21757701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Oct 20;349(2):463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1997 Dec;8(12):2421-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9398665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2016 Dec 15;76(24):7231-7241</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27758885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 May 26;43(10):4937-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25813039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 May 15;31(10):2475-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Adv. 2016 Nov 18;2(11):e1501662</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28138513</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 Sep;31(17):3557-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2013;3:2054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23792593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Mar;22(5):1298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11839797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2016 Feb 5;118(3):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26671978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2009 Jun 17;28(12):1697-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19407817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2007 Jun 1;21(11):1422-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17545470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2019 Feb 28;129(5):1984-1999</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30830875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 May 24;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28537551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>G3 (Bethesda). 2018 May 4;8(5):1829-1839</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29599176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Jun;23(12):4207-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12773564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 8;423(6936):145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2017 Jun 13;19(11):2371-2382</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28614721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Apr 24;34(2):168-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19394294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Oct;23(10):1690-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23788651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transl Res. 2015 Jan;165(1):48-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24746870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2017 Oct 24;3:17040</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29071121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2009 Aug 21;138(4):673-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19703394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2017 Feb 24;8:14605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28233779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 May 7;47(8):3888-3903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30793188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Sep 9;122(5):723-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16143104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Aug 11;166(4):822-839</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27518561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 27;287(5):3249-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22157004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Apr;25(8):3305-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15798214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 1999 Feb;21(2):204-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9988274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Nov 18;123(4):593-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16286008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2007 Apr 15;16 Spec No 1:R28-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17613546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Sep 18;389(6648):251-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9305837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Apr;28(7):2221-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18212068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Oct 22;274(43):30424-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Dec 3;330(6009):1385-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21127252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2017 Mar;205(3):1113-1123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28108585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2007 Oct;13(10):1756-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Exp Mol Med. 2017 Apr 28;49(4):e326</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28450734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transcription. 2018;9(1):30-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28771071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2012 Oct 1;26(19):2119-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23028141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Jun 11;9(1):2268</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29891946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 29;277(13):10753-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11805083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2019 Jun;16(6):785-797</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30810468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2015 Jul 1;29(13):1362-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26159996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Sep 26;419(6905):407-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12353038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Jul;18(7):1073-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Apr;26(8):3029-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16581778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA Biol. 2011 May-Jun;8(3):529-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21508683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2001 Jul 15;15(14):1845-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11459833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Mar;11(3):721-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12667454</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2017 Jun;29(6):1262-1277</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28559476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Nov 28;7:13534</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27892458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2013 Jul 15;29(14):1713-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23740743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2018 Apr 30;9(1):1716</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29712909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cells. 2019 Apr 10;8(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30974922</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
<li>États-Unis</li>
</country>
<region>
<li>Communauté de Madrid</li>
<li>Massachusetts</li>
</region>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Kaczmarek Michaels, Katarzyna" sort="Kaczmarek Michaels, Katarzyna" uniqKey="Kaczmarek Michaels K" first="Katarzyna" last="Kaczmarek Michaels">Katarzyna Kaczmarek Michaels</name>
</noRegion>
<name sortKey="Mohd Mostafa, Salwa" sort="Mohd Mostafa, Salwa" uniqKey="Mohd Mostafa S" first="Salwa" last="Mohd Mostafa">Salwa Mohd Mostafa</name>
<name sortKey="Mohd Mostafa, Salwa" sort="Mohd Mostafa, Salwa" uniqKey="Mohd Mostafa S" first="Salwa" last="Mohd Mostafa">Salwa Mohd Mostafa</name>
<name sortKey="Moore, Claire L" sort="Moore, Claire L" uniqKey="Moore C" first="Claire L" last="Moore">Claire L. Moore</name>
<name sortKey="Moore, Claire L" sort="Moore, Claire L" uniqKey="Moore C" first="Claire L" last="Moore">Claire L. Moore</name>
</country>
<country name="Espagne">
<region name="Communauté de Madrid">
<name sortKey="Ruiz Capella, Julia" sort="Ruiz Capella, Julia" uniqKey="Ruiz Capella J" first="Julia" last="Ruiz Capella">Julia Ruiz Capella</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000058 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000058 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32356874
   |texte=   Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32356874" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020